YeeKal

semidefinite programming

YeeKal
"#"

Background

LP(线性规划)的高效求解大大促进了LP的广泛使用。研究者们向再非线性问题上也找到类似LP这种快速求解的特性,因此把注意力投到了LP中的非负约束, 即非负凸锥,(sets that are invariant by positive scaling of their elements).

Basis

positive semidefinite(psd):

  • $S^n$: the set of symmetric $n\times n$ matrices
  • $S_+^n$: the set of positive semidefinite(psd) symmetric $n\times n$ matrices, a closed convex cone
  • $S_{++}^n$: the set of positive definite(psd) symmetric $n\times n$ matrices
  • $X\succeq 0$: x is symmetric and positive semidefinite
  • $X\succ 0$: x is symmetric and positive definite
  • $X\succeq Y$: $X-Y \succeq 0$
  • $X\succeq Y$: $X-Y \succeq 0$

Remark: $S_+^n={X\in S^n | X\succ 0 }$ is a closed convex cone in $\mathcal{R}^{n^2}$ of dimension $x\times (n+1) /2$

Properties of symmetric matrices

  • if $X\in S^n, X = QDQ^T$ for some orthonormal matrix $Q$ and some diagonal matrix $D$.($Q^{-1} = Q^T$).
  • Q的列向量就是$X$的特征向量,对应特征值为相应的对角元
  • $M\succ 0 $ if and only if $d-v^TP^{-1}v > 0$ for $M$ is defined as:

Semidefinite Programming(SDP)

对于矩阵的三种视角:

  1. matrix
  2. an array of $n^2$ components
  3. a vector in the space $S^n$

在最优化里面每一个元素都是变量,至于怎么排列元素并不改变这一事实.

define linear function of $X$

let $C(X)$ is a linear function of $X$, then $C(X)$ can be written as $C\bullet X$, where:

其本质乃是一个线性方程

define semidefinite program(SDP) in standard conic form

$C, A_1, \cdots, A_m$ are symmetric matrix, and $b\in \mathcal{R}^n$

与标准LP问题类似,在LP中$x$位于非负象限的凸锥中,而这里$X$位于半正定矩阵所形成的凸锥集合中.

通过构造对角元可以很容易把LP问题转化为SDP问题

Standard Inequality Form

$c\in \mathcal{R}^n,x\in \mathcal{R}^n, F_0, \cdots, F_m$ are symmetric matrix

Semidefinite Programming Duality

SDP in Combinatorial Optimization

MAXCUT problem

SDP in Convex Optimization

types of constraints that can be modeled in the SDP framework : linear inequalities, convex quadratic inequalities, lower bounds on matrix norms, lower bounds on determinants of symmetric positive semidefinite matrices, lower bounds on the geometric mean of a nonnegative vector, plus many others.

problems which can be cast in the form of a semidefinite program:linear programming, optimizing a convex quadratic form subject to convex quadratic inequality constraints, minimizing the volume of an ellipsoid that covers a given set of points and ellipsoids, maximizing the volume of an ellipsoid that is contained in a given polytope, plus a variety of maximum eigenvalue and minimum eigenvalue problems.

SDP 中常见的构造方式是通过移项转化为 $u^TAu \geq 0$ 的形式, 然后把约束条件转变为半正定矩阵约束:

比如约束条件:

QCQP: quadratically constrained quadratic program

where $Q_0\succeq 0, Q_i\succeq 0$

Applications

https://inst.eecs.berkeley.edu/~ee127/sp21/livebook/l_sdp_apps.html

Ref