YeeKal
closed

closed constraint motion planning

YeeKal โ€ข โ€ข
"#closed"

A Probabilistic Roadmap Approach for Systems with Closed

  • 1999

  • break the chain loops

  • randomized gradient descent to generate samples
  • tangent space sample to connect neighbor points

A Kinematics-Based Probabilistic Roadmap Method for Closed Kinematic Chains

  • 2000
  • KBPRM: kinematics based prm

  • node generation

    • randomly generate $\theta_a$
    • forward kinematics to compute end-frame configuration $g_{la}$
    • inverse kinematics to solve $\theta_p$
    • $\theta=(\theta_a,\theta_p)$,is retained if it is collision-free
  • node connection

Randomized path planning for linkages with closed kinematic chains

  • 2001
  • randomized gradient descent

random samples

  1. kinematic error
  2. random q in $C_{free}$
  3. compare and select q with smaller error(gradient descend)

Other approaches, such as the Levenberg-Marquardt nonlinear optimization algorithm could be used instead of randomized descent.

GENERATE_RANDOM_SAMPLE()

  1. q$\gets$ RANDOM_CONFIGURATION();
  2. $i\gets 0;j\gets 0$
  3. while $i<I$ and $j\epsilon$ do
  4.   i++; j++;
  5.   $q'\gets \text{RANDOM_NHBR}(q)$;
  6.  if $e(q')<e(q)$ then
  7.    $j\gets 0;q\gets q';$
  8. if $e(q)\leq \epsilon$ then
  9.  Return $q$
  10. else
  11.  Return FAILURE

connect points: incremental motions

step is small enough

  1. tangent space sample: SVD on the matrix of the partial derivatives to find the orthonormal basis.recursive derivative: then the position could be computed with the derivatives directly:

  2. random sample

CONNECT_CONFIGURATIONS(q,q')

  1. $i\gets 0;j\gets 0; k\gets 0; L\gets {q};$
  2. while $i<I$ and $j<J$ and$k\rho_0$ do
  3.   i++; j++;
  4.   $q{''}\gets \text{RANDOM_NHBR}(LAST(L))$;
  5.  if $e(q{''})<\epsilon$ then
  6.    $j\gets 0;k++;$
  7.   if $\rho(q{''},q')<\rho(LAST(L),q')$ then
  8.    $k\gets 0; L\gets L+{q{''}};$
  9. if($\rho (LAST(L),q')\leq \rho_0$) then
  10.  Return L;
  11. else
  12.  Return FAILURE

tangent space