YeeKal
recsys

深度学习在推荐系统中的应用

YeeKal
"#recsys"

Ensemble learning: 混合模型学习, ref1

  • Deep&Wide
  • DeepFM
  • XDeepFM
  • AiBox
  • DCN: Deep Cross Net, 2019 google

  • CF models:

    • Based on Neural Collaborative Filtering (NCF) framework:
      • NeuMF: Neural Matrix Factorization (He et al, WWW'17)
      • ConvNCF: Outer Product-based NCF (He et al, IJCAI'18)
    • Based on Translation framework:
      • TransRec: Translation-based Recommendation (He et al, Recsys'17)
      • LRML: Latent Relational Metric Learning (Tay et al, WWW'18)
  • Feature-based models:
    • Based on Multi-Layer Perceptron:
      • Wide\&Deep (Cheng et al, DLRS'16),
      • Deep Crossing (Shan et al, KDD'16)
    • Based on Factorization Machines (FM):
      • Neural FM (He and Chua, SIGIR'17),
      • Attentional FM (Xiao et al, IJCAI'17),
      • DeepFM (Guo et al, IJCAl'17)

2016 wide &deep

2016_deep_wide.png

two parts: - wide component: a linear model, $y=\mathbf{w}^{T} \mathbf{x}+b$ - deep component: feed-forward neural network, $a^{(l+1)}=f\left(W^{(l)} a^{(l)}+b^{(l)}\right)$

Area Under Receiver Operator Characteristic Curve (AUC)

2016 deepFM

2016_deepfm.png

replace linear model with fm model

ref

  1. blog:
  2. personal code:
  3. open project