YeeKal
kinodynamic

sampled_based_kinodynamic_motion_planning

YeeKal
"#kinodynamic"
  • 固定线型
    • RS
    • spiral
  • OBVP
  • 采样控制量 discretized double integrator dynamics

RRT based

RRT* + differential constraints(local steering method)

kinodynamic motion planning

  • kinodynamic solution: mapping from time to generalized forces or accelerations
  • time optimal kinodynamic solution: require minimal time
  • NP-hard 寻找近似解
  • 质点在2D/3D情景下的近似解

kinematic constraints: joint limits, obstacle avoidance

dynamic constraints: time-derivatives of configuration, which include dynamics laws and bounds on velocity, acceleration, and applied force

BVP: boundary value problem

规划位置的同时还要规划速度

  • Generalized waiter-motion with no-sliding constraints/generalized waiter-motion problem

  • time-optimal motion planning/jerky motion

  • differential constraints, dynamic constraints

  • differential models: $\dot{x}=f(x,u)$

  • discrete-time approximation:$x_{k+1}=f(x_k,u_k)$

numerical integration process:

  • Euler method: $x(\Delta t)\approx x(0)+\Delta tf(x(0),u(0))$
  • Runge-Kutta method: refer to numerical method notes
    • the fourth-order Runge-Kutta integration method:

  • Multistep methods
  • Black-box simulators
  • Reverse-time system simulation

OBVP

  • BVP: boundary value problem
  • OBVP: optimal boundary value problem

解法:

  • Hamilton-Jacobi-Bellman方程或Pontryagin's Minimum Principle
  • fixed-final-state-free-final-time controller
  • double integrator

OBVP

Pontryagin's Minimum Principle (PMP) 是一种解决最优控制问题的方法,它依赖于变分法和哈密顿系统。这个原理提供了必要条件来确定一个过程是否为最优。对于一个具有标准形式的最优控制问题:

受到动力学约束:

以及初始条件 ( x(t_0) = x_0 ) 和终止条件 ( x(t_f) = x_f )。

PMP 引入了协态 ( \lambda(t) ),并定义哈密顿函数 ( H ):

根据 PMP,最优控制 ( u^*(t) ) 必须最小化哈密顿量对每一个 ( t ),同时需要满足动力学方程和以下的协态方程:

Randomized Kinodynamic Planning

distance metric

Kinodynamic RRT*

  • paper: Kinodynamic RRT*: Optimal Motion Planning for Systems with Linear Differential Constraints

  • fixed-final-state-free-final-time controller that exactly and optimally connects any pair of states

  • applied to linear Differential Constraints, applied to non-linear dynamics as well by using their first-order Taylor approximations

temp

  • steering method
  • driftless, 无向的

steering method

Non-zero starting and ending velocities

Asymptotically Optimal Planning by Feasible Kinodynamic Planning in State-Cost Space

code:

- [kinodynamic_frontend](https://github.com/ZamesNg/kinodynamic_frontend/tree/master)

ref