sampled_based_kinodynamic_motion_planning
- 固定线型
- RS
- spiral
- OBVP
- 采样控制量 discretized double integrator dynamics
RRT based
RRT* + differential constraints(local steering method)
kinodynamic motion planning
- kinodynamic solution: mapping from time to generalized forces or accelerations
- time optimal kinodynamic solution: require minimal time
- NP-hard 寻找近似解
- 质点在2D/3D情景下的近似解
kinematic constraints: joint limits, obstacle avoidance
dynamic constraints: time-derivatives of configuration, which include dynamics laws and bounds on velocity, acceleration, and applied force
BVP: boundary value problem
规划位置的同时还要规划速度
-
Generalized waiter-motion with no-sliding constraints/generalized waiter-motion problem
-
time-optimal motion planning/jerky motion
-
differential constraints, dynamic constraints
-
differential models: $\dot{x}=f(x,u)$
- discrete-time approximation:$x_{k+1}=f(x_k,u_k)$
numerical integration process:
- Euler method: $x(\Delta t)\approx x(0)+\Delta tf(x(0),u(0))$
- Runge-Kutta method: refer to numerical method notes
- the fourth-order Runge-Kutta integration method:
- Multistep methods
- Black-box simulators
- Reverse-time system simulation
OBVP
- BVP: boundary value problem
- OBVP: optimal boundary value problem
解法:
- Hamilton-Jacobi-Bellman方程或Pontryagin's Minimum Principle
- fixed-final-state-free-final-time controller
- double integrator
OBVP
Pontryagin's Minimum Principle (PMP) 是一种解决最优控制问题的方法,它依赖于变分法和哈密顿系统。这个原理提供了必要条件来确定一个过程是否为最优。对于一个具有标准形式的最优控制问题:
受到动力学约束:
以及初始条件 ( x(t_0) = x_0 ) 和终止条件 ( x(t_f) = x_f )。
PMP 引入了协态 ( \lambda(t) ),并定义哈密顿函数 ( H ):
根据 PMP,最优控制 ( u^*(t) ) 必须最小化哈密顿量对每一个 ( t ),同时需要满足动力学方程和以下的协态方程:
Randomized Kinodynamic Planning
distance metric
Kinodynamic RRT*
-
paper: Kinodynamic RRT*: Optimal Motion Planning for Systems with Linear Differential Constraints
-
fixed-final-state-free-final-time controller that exactly and optimally connects any pair of states
- applied to linear Differential Constraints, applied to non-linear dynamics as well by using their first-order Taylor approximations
temp
- steering method
- driftless, 无向的
steering method
Non-zero starting and ending velocities
Asymptotically Optimal Planning by Feasible Kinodynamic Planning in State-Cost Space
code:
- [kinodynamic_frontend](https://github.com/ZamesNg/kinodynamic_frontend/tree/master)
ref
- blog
- code
- project
- paper
- 1993 - Kinodynamic Motion Planning
- 2012-Kinodynamic RRT*: Optimal Motion Planning for Systems with Linear Differential Constraints
- A New Approach to Time-Optimal Path Parameterization Based on Reachability Analysis
- 2013-rss-Kinodynamic Planning in the Configuration Space via Admissible Velocity Propagation
- 2014-sst-Asymptotically Optimal Sampling-based Kinodynamic Planning
- 2018-Sampling-based optimal kinodynamic planning with motion primitives
- Asymptotically Optimal Planning by Feasible Kinodynamic Planning in State-Cost Space