YeeKal
planning

基于最优化的轨迹规划/运动规划

YeeKal
"#planning"

PDE: 偏微分方程(Partial Differential Equation)

最优控制的方法在轨迹优化中主要使用直接法中的配点法。配点法中由于积分和为分的处理又会有梯形积分,simpson等各种积分法的区别。从广义上讲,伪谱法也属于配点法,与上述积分类似,也是通过吧为分和积分通过另一种方式离散化,转化为更容易构造优化方程的形式。

最优控制 VS 轨迹优化:

最优控制 VS 非线性优化

  • collocation methods
  • pseudo

  • scaling

optimal control based planning

  • In the view of control: generate feasible control inputs under dynamics constraints

  • In the view of planning: generate dynamically-feasible waypoints (which will be tracked with appropriate control methods)

methods

  • explicit methods: convex problem, LQR
  • numerical methods: shooting, collocation
    • convex
      • software: CVX, OSQP
      • internal: Gurobi, Sedumi, Mosek
    • non-convex
      • interior point: IPOPT, SNOPT
      • active set methods: SAS

lqr, mpc

challenge

在考虑动力学的情况下会遇到的挑战:

  1. obstacle avoidance: 不可导,非凸。
  2. hybrid mode switch (contact force)
  3. energy efficiency and smoothness(min jerk, snap)

obstacle avoidance

simple geometric constraints: e.g. $(x-x_{obs})^2+(y-y_{obs})^2\geq r^2$. such constraints are general non-convex.

to make it convex:

  • mixed-integer formulation
8Richards and How, Aircraft trajectory planning with collision avoidance using mixed integer linear programming.
9Deits and Tedrake, Footstep planning on uneven terrain with mixed-integer convex optimization.
10Deits and Tedrake, Efficient mixed-integer planning for UAVs in cluttered environments.
  • dual variables
1Zhang, Liniger, and Borrelli, Optimization-based collision avoidance
github: https://github.com/XiaojingGeorgeZhang/OBCA
  • chomp/stomp/ Sequential Convex Optimization
2Schulman et al., Motion planning with sequential convex optimization and convex collision checking

contact force

Optimization through contact(contact invariant optimization): contact force is zero or distance between contact points should be zero.

application case: manipulation with finger contact, legged robotics

lab: https://homes.cs.washington.edu/~todorov/projects.html
github: https://github.com/robbierolin/Contact-Invariant-Optimization-Project
Contact-Invariant Optimization for Hand Manipulation: https://homes.cs.washington.edu/~zoran/MordatchSCA12.pdf
Discovery of Complex Behaviors through Contact-Invariant Optimization

ref