throw objects
Mathematical model
The parabolic trajectory: when the flying object hit ground, let $y=0$: assume $x_0=y_0=0$:
Velocity in cartesian space transformed to joint space:
Orientation constraint: - perpendicular to the velocity vector - follow the parabolic trajectory for a while to wait for gripper open competely
Accurate Object Throwing by an Industrial Robot Manipulator
- 2008
- throw objects at given targets
- on kuka
path planning pipeline:
|---------------| |---------------------| |---------------|
| acceleration | ---> | parabola following | ---> | deceleration |
|---------------| |---------------------| |---------------|
___
/ \
/ \
___/ \___
In acceleration, the most suitable velocity vector $\dot{q}$ in joint space can be chosen due to the first weighting criterion(??): At the end of the path planning a second weighting criterion is applied(??):
In the experiment the following time is 12 ms.
Throwing motion generation using nonlinear optimization on a 6-degree-of-freedom robot manipulator
- 2009
- trajectory generated with dynamic limitations on 6-dof rigid robot
- trajectory is generated off-line as cubic spline using general constrained nonlinear optimization
- trajectory tracking using a discrete-time constrained optimal control technique
- on 6dof self-designed robot
In introduction: - before handle with lower dof robot arms(2 link or 3)
planning algorithm: - given the release position and velocity - use cubic polynomial to generate the acceleration and deceleration trajectory in joint sapce - then define the object function to optimize
reference to 2008_A technique for time-jerk optimal planning of robot trajectories.
Flight Trajectory Simulation of Robotic Throwing Shuttlecock
- 2018
- 1 degree of freedom
Planning Longest Pitch Trajectories for Compliant Serial Manipulators
- 2016
- plan an optimal pitching trajectory for compliant serial manipulators
- on kuka
Time-optimal trajectory generation for path following with bounded acceleration and velocity
- 2012
- path following
- github
experiment on ur
ur5
ur10
# ur5
-
joint: 0.7201124121729614 -1.313842408349126 1.7595723112421104, 0.24912787113682036 2.1975531391698917 0.4551817753281454
cartesiaN VEL: 1.25 0 1.25 0 -0.3 0
JOINT VEL: -2.03297 -0.0193843 -3.66577 2.40697 -1.43494 -1.79475
-
joint: 0.03363972841571032, -1.1570948663262197, 1.531941426459243, 0.27119440827586067, 1.627028593915378, 0.0423902909835748
joint v: -0.0867491 1.55845 -5.70574 3.84408 -0.0631924 -0.0603776
# ur10
joint: 0.7201124121729614 -1.313842408349126 1.7595723112421104, 0.24912787113682036 2.1975531391698917 0.4551817753281454
cartesiaN VEL: 1.25 0 1.25 0 -0.3 0
joint vel: -1.36305 -0.00115985 -2.5122 1.5458 -0.920344 -1.26516
-
joint: 0.03363972841571032, -1.1570948663262197, 1.531941426459243, 0.27119440827586067, 1.627028593915378, 0.0423902909835748
joint vel:-0.0585142 1.07089 -3.9108 2.53765 -0.0406475 -0.0433524
-
joint: 0.4696961125055863, -1.292321774554368, 1.655893219561577, -0.0861575872871991, 1.0583137045298303, -0.24666646486363952
joint vel: -0.838175 0.756023 -3.3074 2.48649 -0.768942 -0.413232
相同关节姿态,相同迪卡尔空间速度下,ur10所需的关节角速度较小