YeeKal

06_dynamics

YeeKal
"#"

acceleration

线加速度

动点在相对坐标系B中的运动,变换到坐标系A中的表达式:

其中叉积的性质:

in revolute joint:

in prismatic joint:

角加速度

rigid body dynamics

linear momentum

angular momentum(角动量/动量矩)

(moments, 力矩)

刚体定轴转动:

so:

($I$, inertia tensor)

Newton equation and Euler equation

(此处请注意对角动量的求导,对惯性张量I的求导)

inertia tensor

parallel axis theorem

$p_C$为坐标系C原点在坐标系A中的坐标。

Newton-Euler algorithm

where the origin of frame{$C_i$} is at the center of the body, with the same orientation as frame{i}.

newton_euler.png

由关节位置,速度和加速度计算所需的关节力矩。

forward equation: vel, acceleration

forward:

backward

惯性张量:

设 $w=[w_x, w_y, w_z]^T$,角动量:$L=Iw$

two link arm ref

  • inverse dynamics: q to torque
  • forward dynamics: torque to q

动力学方程的结构

state space equation

configuration space equation

Lagrange equation

(kinetic energy-potential energy)

kinetic energy: $K=\sum_iK_i=\sum_i(\frac{1}{2}m_i\upsilon^T_{C_i}\upsilon_{C_i}+\frac{1}{2}{}^i\omega^T_i {}^{C_i}I_i\omega_i )=\frac{1}{2}\dot{q}^TM(q)\dot{q}$

kinetic energy: work done by external forces to bring the system from rest to its current state.

another version:

where

ref